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Importance of Ice Cloud Particle Models
• Ice cloud properties still least understood atmospheric parameters in remote sensing and 

radiative transfer calculations due to uncertainties in ice cloud microphysical and optical 
properties.
• Ice cloud particle models help to describe microphysical (e.g., particle habit) and optical 

properties (e.g., scattering phase matrix) of ice clouds.
o These properties are fundamental to applications in remote sensing, radiative transfer, and 

general circulation models.
o New ice cloud particle models being developed/improved upon to provide more accurate 

downstream calculations.
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Reasons for a new Two-Habit Model Database
• Observations of ice particles that comprises ice clouds show that particles can 

be irregularly shaped rather than being idealized such as a hexagonal column.
• Conventional particle size classification of maximum dimension do not 

represent irregular particle shapes leading to physical and optical inconsistency.
• Previously developed Two-Habit Model databases lack accurate backscattering 

which is important for applications for lidar-based radiative transfer simulations.

𝐷"#$

𝜆 = 0.80 𝜇𝑚
kD = 1000

Weak 
Backscattering 

for non-
absorbing 

wavelengths



Reasons for a new Two-Habit Model Database
• The Two-Habit Model (THM) follows the Thompson et al. 2008 cloud ice 

scheme than other commonly used single-scattering databases.
• Improvements to the THM should maintain the consistency with the cloud ice 

scheme.
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Recap: Preliminary New Two Habit Model
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• Same size-dependent, and continuous mixing ratio as the last version THM (Loeb 
et al., 2018) (Figure 1a).

• New 60-particle ensemble of distorted single columns.
• Volume-projected area equivalent sphere diameter (𝐷$%) size characterization 

(Figure 1b).
• Physical Geometric Optics Model (PGOM)-based enhanced backscattering 

calculations applied to existing Improved Geometric Optics Model (IGOM) single-
scattering calculations (Figure 1c).
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Preliminary THM (Version 3)

Wavelength 42 bins (0.2 – 20 µm)

Size 59 bins (2.0 – 1000.0 µm)



• Upon transitioning from roughened particle to distorted particle ensemble, 𝐷!"# size characterization results in 
optical and physical inconsistency (Warren and Grenfell, 1999).
o Particle distortion causes changes in particle volume and projected area.

• 3 other size characterizations considered for replacing 𝐷!"#.
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Extinction Efficiency (𝑄*$7) Size Characterization Comparison2o Volume-projected area equivalent sphere 
diameter (𝐷$%) selected to replace 𝐷!"# as 
new size characterization for new THM (Figure 
2).
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Recap: PGOM-Based Backscattering Enhancement
• PGOM provides accurate backscattering calculations but significantly more computationally demanding than IGOM and 

IITM.
o PGOM fully considers the vector properties and phase difference characteristics of ice particles while IGOM summarizes 

it for faster computation time.
• The PGOM-based backscattering enhancement, calculated from lookup table from selected refractive indices and size 

parameters, was applied to the preliminary THM.
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THMv3 – THMv2

• Conducted lidar-based radiative transfer simulations utilizing CALIOP/CALIPSO data and the 
cloud optical thickness (COT) – integrated attenuated backscattering (IAB) retrieval approach.
o Validate changes in simulation results for non-absorbing wavelengths (532 nm) caused by 

using the new THM with enhanced backscattering.
• New Preliminary THM showed significantly higher IAB for larger effective radii and COT.
o New THM reveals more COT information in the COT – IAB retrieval approach.

THMv2 THMv3

Recap: Major Changes in Lidar-based Radiative Transfer Simulations
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Recap: Preliminary THM Active – Passive Consistency Check
• 532 nm CALIOP/CALIPSO IAB and 8.65, 10.6, and 12.05 µm IIR/CALIPSO Split-Window 

technique COT retrieval methods utilized to validate active-passive consistencies between 
the previous and preliminary THM databases.

• New THM showed to achieve active-passive consistency in COT retrievals due to more IAB 
COT information provided by improved backscattering.
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Current Progress: Full Resolution THM Developed
• Full resolution THM database has been developed.

o 60-particle irregular single column and 20-
particle irregular 20-column aggregate 
ensembles.

o Volume-projected area equivalent sphere 
diameter size characterization.

o Same wavelength and size resolution and range 
as previous THM.

o Only IGOM calculations for size parameters > 25.

New THM (Version 3)

Wavelength 470 bins (0.2 – 200 µm)

Size 189 bins (2.0 – 10000.0 µm)
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Full Resolution THM Bulk Scattering Property Preview
• Absorptive wavelengths at about 2.9, 11, and 46 µm have significantly low extinction efficiencies, single-

scattering albedo (Figure 8a) (due to sharp declines in real part of refractive index).
• Most significant THM version differences in extinction efficiency (Figure 8b).

o Likely caused by small particle habit change and IITM calculation size parameter limit reduction (THMv2 
IITM < 40; THMv3 IITM < 25).

THMv3 Bulk Scattering Properties8a 8b THMv3 – THMv2 Scattering Properties



Full Resolution THM Comparison with Previous Version
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• Bulk scattering calculations with effective radius eliminate 
obvious size characterization differences between the two 
THM versions.
o Reveals how irregular single column ensemble affected 

results.
• For small wavelengths (< 4 µm), bulk 𝑄&#' (Fig. 9a) for 

THMv3 less sensitive to absorptive wavelengths.
• THMv3 bulk 𝜔 (Fig. 9b) slightly greater than THMv2 

throughout nearly all wavelengths (except shortwave).
• THMv3 bulk 𝑔 (Fig. 9c) slightly less than THMv2 for nearly 

all wavelengths.
• Overall, distorted single column ensemble more reflective 

and less sensitive to absorptive wavelengths.



Current Progress: Lidar Version of New THM In Development
• Performing PGOM calculations for the full resolution THM not computationally feasible.
o Each PGOM calculation takes around 10 min – 1 hour to complete for each wavelength and size.
o Using backscattering enhancement parameterization like in preliminary THM likely to lead to errors.

• Want to focus on wavelengths commonly used for lidar applications.
o 355, 532, and 1064 nm considered for the lidar version of the new THM.
o Will use PGOM calculations to replace IGOM-calculated backscattering region (160 degrees and 

greater).

Lidar THM

Wavelength 3 bins (355, 532, 1064 nm)

Size 189 bins (2.0 – 10000.0 µm)
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Actual PGOM 
calculations (red) 
reveal more 
backscattering region 
information than the 
parameterization 
(green)



Preview: 532 nm Lidar Ratio THM vs. Previous THM

10

• Since the new THM has higher backscattering, 
the denominator of the lidar ratio will be 
higher thus reducing the ratio value.

• The THMv3 532 nm lidar ratio ranges from 30 
– 40 sr.
o In agreement with Seifert et al. 2007: lidar 

ratio of 29 – 33 sr over Indian Ocean.
o In agreement with Josset et al. 2012: lidar 

ratio of 33 ± 5 sr over the global ocean.
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Summary
• Successfully developed the full resolution new THM with a new size characterization and 

particle habit change.
o Bulk scattering calculations indicate no abnormalities in the new THM.
o Testing/validation will be conducted using the database in remote sensing applications 

and broadband radiative transfer simulations.

• Lidar version of the THM is currently in development and will be completed in June.
o Will demonstrate the improvements in retrievals provided by the accurate PGOM 

backscattering calculations.
o Will be compared against the previous THM and a lidar version of the Fu 1996 database 

that will also have PGOM backscattering calculations.
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